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Introduction
Specific genes that are involved in epigenetics are sensitive to 
nutritional regulation, oxidative stress and the development 
of insulin resistance that can result from changes in cellular 
chromatin structure, DNA methylation and histone modifications 
with relevance to the global chronic disease epidemic [1-7]. 
Epigenetic modifications in specific cells such as the brain, 
adipose tissue and liver are more sensitive than other tissues 
[4]. Epigenetic modifications induced by unhealthy diets or 
environmental xenobiotics involve the anti-aging genes [8] 
that alter gene expression in the Suprachiasmatic Nucleus 
(SCN) in the brain [4,5] with effects on peripheral lipid 
metabolism and energy expenditure that involve the adipose 
tissue and liver with immune alterations [9-11] that determine 
the survival of cells in various tissues (Figure 1). 

In the developing world with urbanization and increased access 
to food epigenetic and immune system alterations are associated 
with increased chronic disease susceptibility. Down regulation 
of anti-aging genes reduces hepatic xenobiotic (soil, air, water) 
metabolism and may promote multiple organ dysfunction 
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Abstract
Nutritional and environmental epigenetics are involved with the repression of 
anti-aging genes that are linked to the chronic disease epidemic. Unhealthy diets 
inactivate the calorie sensitive gene Sirtuin 1 (Sirt 1) involved in epigenetic processes 
that promote immune system alterations, mitochondrial apoptosis, Non-alcoholic 
Fatty Liver Disease (NAFLD), diabetes and Nitric Oxide (NO) modification with 
relevance to core body temperature involved with appetite regulation, glucose 
homeostasis and hepatic xenobiotic metabolism. The interplay between NO and 
epigenetics has attracted interest with relevance to autoimmune disease and 
mitophagy that has become of critical concern to diabetes and the development 
of MODS. Future research involved with nutritional research and the maintenance 
of Sirt 1 transcriptional control is critical to the prevention of MODS that is linked 
to the immune system and insulin resistance. In the developing world bacterial 
lipopolysaccharides a critical repressor of Sirt 1 is now involved with NAFLD and 
various organ diseases relevant to tissue accumulation of xenobiotics from various 
environments with relevance to MODS and the global chronic disease epidemic.
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syndrome (MODS) [12-14]. These toxic compounds are involved 
in nuclear receptor dysfunction such as the nuclear receptor 
Sirtuin 1 (Sirt 1) [5] that determines the survival of man and 
various species with relevance to toxicity to mitochondria in 
neurons [15,16] and cells in peripheral tissues [17-27].

Sirt 1 Repression with Accelerated Brain 
Aging and Organ Disease
The defective gene in various chronic diseases [28-38] is Sirt 1 
a NAD(+)dependent class III histone deacetylase (HDAC) protein 
that targets transcription factors to adapt gene expression to 
metabolic activity, insulin resistance and inflammation. Interests 
in Sirt 1 have increased since it may override the effects of other 
anti-aging genes such as Klotho, p66Shc (longevity protein) and 
Fork head box proteins (FOXO1/FOXO3a) [8]. In adipose tissue 
gene expression profiles of Klotho, p66Shc (longevity protein) 
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and Fork head box proteins (FOXO1/FOXO3a) have been 
completed and indicate down regulation of these genes are 
related to mitochondrial apoptosis, adipogenesis and adipocyte 
differentiation [29-38]. Sirt 1 is central to the down regulation 
of the other anti-aging genes via its role as a deacetylase of the 
transcription factor p53 [8]. Sirt 1/p53 dysregulation is important 
to mitochondrial apoptosis [4] and p53 interference has become 
a key defect in biology [39-42] with relevance to MODS and the 
diabetes epidemic.

The main types of brain cells are the glial cells (astrocytes, 
oligodendrocytes, and microglia) and the interaction of the glial 
cell referred to as the astrocyte with the neuron are essential to 
maintain neuron life span and prevent neurodegenerative disease 
[43]. Neurons in the brain with Sirt 1 repression may undergo 
early programmed cell death [44] with altered astrocyte neuron 
interactions that lead to accelerated brain aging [45]. Sirt 1 and 
its dysfunction in the brain involves the SCN and Sirt 1 repression 
inactivates the SCN that is involved with appetite regulation, 
body glucose control, circadian rhythm and hepatic xenobiotic 
metabolism [5,46]. Xenobiotics interfere with Sirt 1’ regulation 
of DNA repair [47,48] and p53 transcriptional regulation [39-42] 
with relevance to interference with mitochondrial biogenesis 
[4,49,50] and promotion of mitochondrial apoptosis in neurons 
with effects on synaptic plasticity [51-58]. 			 

Sirt 1 activation of the non amyloidogenic α-secretase is involved 
in the processing of the amyloid precursor protein (APP) to reduce 
amyloid beta generation [59]. Sirt 1 dysregulation increased 
toxic amyloid beta formation associated with mitochondrial 
apoptosis [60]. SCN and its regulation of core body temperature 
[61] has become of major interest to species survival with Sirt 1 
now regarded as the heat shock gene [62-64] with temperature 
regulation critical to Sirt 1 regulation of insulin resistance and 
xenobiotic metabolism [5,65,66]. Sirt 1 involvement in telomere 
maintenance maintains chromosome stability and its regulation 

of telomere length may be nullified by increased xenobiotics with 
telomere length shortening [4,5,67,68].

Sirt 1 effects on p53 gene regulation supersede micro RNA 
(miRNAs) regulation of p53 [69-71] with relevance to their role 
in various chronic diseases [17-27]. MiRNAs such as miR-34a [72] 
and miR-122, miR-132 [73,74] inhibit Sirt 1 and may inactivate 
p53-miRNA interactions. Interference with cellular miRNA 
by diet, drugs and xenobiotics are now relevant to Sirt 1/p53 
dysregulation and cell apoptosis. MiRNAs may regulate Sirt 1/p53 
regulation of nuclear receptors such as peroxisome proliferator-
activated receptor-gamma co-activator (PGC-1 alpha) and 
Pregnane X Receptor (PXR) with interference with xenobiotic 
metabolism relevant to mitochondrial biogenesis [4,5,75,76].

Other nuclear receptors such as peroxisome proliferator-
activated receptor gamma (PPAR gamma), PPAR alpha, beta/
delta, liver X receptors (LXR)/liver receptor homolog-1 (LRH-1) 
involved in energy, glucose, cholesterol, fatty acid metabolism 
are regulated by Sirt 1 with connections between hepatic nutrient 
and xenobiotic metabolism (PXR, CAR and xenobiotic sensing 
nuclear receptor) involved in the expression of cytochrome p 
450 (CYP 450) enzymes [5]. Increased levels of xenobiotics in 
the plasma and various tissues may lead to increased reactive 
oxygen species associated with low Sirt1 activity [77,78] which is 
associated with chronic diseases in developing countries.

SCN dysfunction in diabetes with 
relevance to MODS
Insulin resistance and beta cell dysfunction has been associated 
with the development of MODS [79,80]. In Type 2 diabetes more 
than 150 genetic loci are associated with the development of 
diabetes and 50 candidate genes have shown to play a major 
part in the development of the disease [81]. These genes are 
involved in pancreatic β cell function, insulin action and glucose 
metabolism in metabolic conditions. In Type 1 diabetes the HLA 
class genes have been associated with Type 1 diabetes with 
differences in haplotypes in ethnic groups such as Caucasians, 
African, Americans, Japanese and Chinese [46]. Sirt 1 regulation 
of the MODY gene via transcription factors hepatocyte nuclear 
factor 1 has been shown with evidence of genetic regulation 
of liver and pancreas in Type 1 diabetes [81]. Nutritional 
dysregulation of Sirt1 and the SCN may now involve Type 1, 
Type 2 and Type 3 diabetes (Figure 2) [63,82] and induce MODS 
that involves accelerated organ diseases with hepatic xenobiotic 
metabolism (NAFLD) completely inhibited in these individuals. 
Sirt 1 repression induces mitophagy with the development of 
MODS and may supersede the connections between diabetic 
genes (Type 1 and 2) and their associated diseases (Figure 2). Sirt 
1 plays an important role in the regulation fibroblast growth factor 
21 [82-84] and the apelinergic pathway [85] with connections 
to brain insulin resistance (stroke, dementia, AD) [86]. In Type 
2 diabetes the relevance of stress, anxiety and hyperphagia are 
associated with defective apelinergic pathways [85] and severity 
of diabetes (post-transcriptional defect) associated with Sirt 
1-apelinergic system defects in mental disorders [87]. 	

Dysregulated Sirt 1 on adipocyte differentiation and senescence 
involves gene expression and secretion of adiponectin with effects 
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Figure 1 Nutritional diets and environmental xenobiotics 
are now involved with the repression of anti-aging 
genes with epigenetic alterations linked to the global 
chronic disease epidemic. Circadian dyssynchrony and 
immune system imbalances involve mitochondrial 
apoptosis in many tissues with relevance to diabetes 
and Multiple Organ Disease Syndrome (MODS). 
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on the release of adipokines and cytokines that are implicated 
in NAFLD and chronic diseases [88-97]. Sirt 1 interactions with 
forkhead transcription factor O1 (FOXO1), C/EBP alpha may 
involve Klotho C/EBP alpha and peroxisome Proliferator-Activated 
Receptor (PPAR) interactions [98-103] important to mitochondrial 
function and adipocyte differentiation. Furthermore miR-122 
and miR-132 [4] have been shown directly inhibit Sirt 1 and may 
interfere with adipose tissue adiponectin release. FGF21 binds 
to FGF receptor and beta koltho receptor complex [104-108] 
and activates adipose tissue Sirt 1/p53 with interactions with 
relevance to PGC1-alpha, peroxisome proliferator activated 
receptor gamma, FOXO 1 [109-111] and AMP activated protein 
kinase (AMPK) involved in adipocyte tissue transformation. 
FGF21 and Sirt 1 are essential for liver mitochondrial function 
(Figure 2) and regulate pancreas mitochondrial biogenesis and 
beta cell insulin secretion [112]. 

Sirt 1 effects on hepatic cholesterol metabolism and NAFLD are 
mediated via Sirt 1 and transcription factor C/EBP alpha that 
regulates the transcription of the apolipoprotein B gene [113]. 
The protein kinase c-jun amino-terminal kinase 1 (JNK1) can 
phosphorylate Sirt 1 with phosphorylation of Sirt 1 important 
to p53 activation with relevance to NAFLD and the metabolic 
syndrome [46]. Sirt 1 and its connections to NAFLD may 
involve Brd4/p53 interactions with relevance to Brd 4-P-TEFb 
involvement in mitotic progression [46,114]. The control of 
the adipose tissue-liver crosstalk (gene expression) by the SCN 
is defective in diabetes (Type 3) and related to excess calorie 
consumption or core body temperature that overrides the Sirt 
1 related SCN entrainment [61]. SCN defects are related to the 
peripheral circadian clock dyssynchrony [115] (adipose tissue-
liver cross talk) that determine Sirt 1 regulation of low adiponectin 
and melatonin levels involved in the metabolic syndrome, NAFLD 
and reverse cholesterol transport [61,83,116] with relevance to 
diabetes and the severity of MODS (Figure 2).

Epigenetic Modifications Involve Nitric 
Oxide and Immune Dysregulation in 
Diabetes
Induction of epigenetic alterations that determine brain 
dysfunction involve Nitric Oxide (NO) homeostasis and effect the 
adipose tissue-liver crosstalk with relevance to immune alterations 
that determine the survival of cells in various tissues. Diabetic 
individuals with defective SCN and brain-liver crosstalk involve 
immune imbalances as the primary cause of MODS. In Type 3/
Type 2 individual’s reduced xenobiotic metabolism is associated 
with NAFLD and the induction of MODS connected to the immune 
system.	 Sirt 1/p53 transcriptional responses are involved in NO 
metabolism [85,117-119] and immunometabolism regulated by 
diet, drugs and the environment are critical to mitochondrial 
apoptosis and the induction of NAFLD in the developed world. 
Sirt 1 is connected to immunometabolism [9] and adipogenesis 
disorders with adipose tissue release of adipokines, inflammatory 
cytokines, heat shock proteins and natural killer cells relevant to 
mitophagy in diabetes and MODS. Sirt 1 is essential to maintain 
the SCN, NO homeostasis [85] and its dysfunction is critical to 
the defective circadian rhythm of heat shock proteins [60-63] 
with relation to cellular immune response [9,120]. Sirt 1 and 
its regulation of autoimmune disease is central to defective 
liver fat metabolism [9] with maintenance of Sirt 1 in adipose 
tissue and the liver of critical importance to MODS. Heat/cold 
stress inactivate the heat shock gene Sirt 1 [60-63] with NO 
dyshomeostasis, immune system imbalances connected to 
mitophagy (Figure 3) [4,5,9]. NO regulation of p53 [117-119] is 
important to epigenetic regulation and Sirt 1 post-transcriptional 
regulation by NO [85,121-123] involves p53/miRNA [4,124,125], 
anti-aging gene p66shc [126-128], klotho [129-131], FOXO 3a 
[132,133], transcription factors PGC1 alpha [132,134,135], PPAR 
[136-138], LXR-ABCA1 [139,140], AMPK signalling [85,141,142], 
HSP/body temperature regulation [143-146] and glucose 
homeostasis [147,148]. The importance of Sirt 1 and the immune 
response is now consistent with its interplay between NO and 
epigenetics [149,150] with relevance to human health and 
disease (Figure 3). The role of NO and cytochrome p450 complex 
formation [151-153] has become relevant to cytochrome P450 
expression in xenobiotic metabolism [5] with increased liver 
NO [85] implicated in the inactivation of Sirt1/PXR’s control of 
xenobiotic metabolism [4,5,154,155]. Sirt 1 and its regulation of 
immunometabolism [9] are connected to xenobiotic metabolism 
with implications to MODS and xenobiotic induced immune 
alterations [156,157]. Xenobiotics may nullify Sirt 1’s role in NO 
homeostasis and vasodilation in the heart [85] with relevance 
to interference of therapeutic drugs for blood vessel dilation 
[158]. NO regulates calcium signalling in various cells [159-161] 
and in the SCN alterations in cell calcium is critical to circadian 
dyssynchrony [162].	

Lifestyle factors with Nutritional interventions may reverse Global 
chronic disease Low calorie diets that upregulate Sirt 1 promote 
anti-aging gene therapy, miRNA function, transcriptional factor 
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Figure 2 Nutritional regulation of Sirt 1 is important to 
prevent insulin resistance and mitophagy in diabetic 
individuals. Individuals with Type 3/Type 2 diabetes 
have SCN defects with accelerated NAFLD and MODS 
associated with hepatic xenobiotic metabolism and 
mitophagy. 
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Figure 3 The heat shock gene Sirt 1 is critical to NO 
homeostasis, immune system imbalances connected 
to mitophagy. NO, nuclear receptor signalling and the 
immune response is now connected to MODS. The 
role of NO and cytochrome p450 complex formation 
has become relevant to inactivation of Sirt 1 post-
transcriptional regulation of PXR/cytochrome P450 
expression essential to maintain hepatic xenobiotic 
metabolism.

control and interactive nuclear receptor signalling in various cells 
and tissue with relevance to maintenance of immune response 
and prevention of autoimmune disease that may be connected 
to global chronic disease and the development of MODS (Figure 
3). Bacterial LPS is involved with NAFLD and interference with 
hepatic xenobiotic metabolism is relevant to increased mitophagy 
and neurodegeneration. Nutritional diets with Sirt 1 activators 
[162] have become important to molecular and genetic medicine 

with relevance to immune disturbances and mitophagy [9,60] 
in diabetes and MODS (Figure 3). Anxiety, stress and heat/cold 
stress may induce heat shock protein-mitophagy [9,60,61,63] 
relevant to brain disease. Sirt 1 inhibitors [162,163] may interfere 
with dietary regulation of immune responses and accelerated 
autoimmune disease relevant to chronic disease and MODS.

Conclusion

Global chronic diseases involve cellular immune alterations 
that lead to mitophagy in various tissues. High calorie diets are 
involved with transcriptional dysregulation and defective hepatic 
xenobiotic associated with immunometabolism disorders in 
genetic medicine. Nutritional regulation of Sirt 1 is essential 
to maintain the interplay between NO, glucose homeostasis, 
immune system and various nuclear receptors, transcription 
factors/signalling factors and miRNA involved in epigenetics 
with relevance to human diabetes. Bacterial LPS induced Sirt 
1 repression in Type 3/Type 2 diabetes induce NAFLD with 
increased xenobiotic levels linked to the development of MODS 
and global chronic disease in the developing world.
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