Abstract

The Interaction between Epigenetics, Muscle and Cardio Vascular Diseases

The INTERHEART and the INTERSTROKE studies identified a number of modifiable risk factors (smoking, diabetes, dietary patterns, physical activity, etc.) that are associated with the presence of cardiovascular disease (CVD). Recent international studies have shown that lower handgrip (HG) strength is associated with an increased risk of CVD death and total mortality both in initially healthy adults and in patients with diabetes mellitus type 2 (T2DM). Furthermore, in young people from diverse populations, lower HG strength is associated with a poor cardiometabolic risk profile. Low birth weight (LBW) is associated with lower HG strength across the life-cycle and with faster infant growth, abdominal fat accumulation, higher blood pressure during adolescence, and an increased risk of cardio-metabolic diseases in the adulthood. Significant differences has been observed in HG strength of people from high, medium and low-income countries, suggesting that developmental plasticity and alterations in muscular mass resulting from altered environmental conditions during early life may also have a mediating role in the risk of cardio-vascular disease (CVD). In the present review we discuss the importance of epigenetic and its correlation to the development of muscular tissue in relation to the predictive value of strength in CVD risk and mortality. In addition, we examine with greater detail the influence of maternal undernutrition and the possible epigenetic mechanisms by which it increases the risk of CVD risk later in life.


Author(s):

Patricio Lopez Jaramillo*, Silvia Gonzalez Gomez, Lazaro Vanstrahlen Gonzales, Diego Zarate-Bernal, Karina DiStefano, Paul Camacho Lopez and Daniel Cohen



Abstract | Full-Text | PDF

Share this  Facebook  Twitter  LinkedIn  Google+
Flyer image
Abstracted/Indexed in
  • Google Scholar
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • WorldCat
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Secret Search Engine Labs